COURSE INFORMATON						
Course Title	Code	Semester	L+P Hour	Credits	ECTS	
Advanced Laboratory Analysis Techniques and Devices	BME532		(3+0+0)	3	10	

Prerequisites

Language of Instruction	English		
Course Level	Master's Degree		
Course Type	Technical Elective		
Course Coordinator	Prof. Dr. Ali Ümit Keskin		
Instructors Assist. Prof. Feride Şermin UTKU			
Assistants			
Goals To provide students knowledge on biochemical analysis method instruments and biosensors for the detection of metabolites.			
Quality control and quality assurance in biochemical analysis, according and precision of biochemical methods, basics of nanomat biomaterials used in immunological and radioisotope technique imaging, fluorimetry, spectrophotometry, chromatography (TLC and HPLC), electrophoresis, coulometry, osmometry, refractor atomic emission and absorption, ion selective, oxygen and dioxide electrodes, as well as a general understanding of interdisciplinary field of lab-on-chip devices.			

Со	urse Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1)	Basics of instruments and biosensors used in biochemical analysis	2,4,5,6,7,11	1,2,3	A,C,D
2)	Quality control and quality assurance in biochemical analysis, accuracy and precision of biochemical methods	2,4,5,6,7,11	1,2,3	A,C,D
3)	Instruments used characterization of materials and biochemical processes	2,4,5,6,7,11	1,2,3	A,C,D
4)	Lab-on-a-chip devices	2,4,5,6,7,11	1,2,3	A,C,D

Teaching Methods:	ture, 2: Question-Answer, 3: Lab, 4: Case-study ting, B: Experiment, C: Homework, D: Project presentation	
Assessment Methods:	A: Testing, B: Experiment, C: Homework, D: Project presentation	

	COURSE CONTENT				
Week	Topics	Study Materials			
1	Diseases and biochemical markers	Lecture notes, articles			
2	Analytical clinical methods	Lecture notes, articles			
3	Conventional biochemical methods	Lecture notes, articles			
4	Conventional biochemical instruments	Lecture notes, articles			
5	Immunological and radioisotope techniques and imaging	Lecture notes, articles			
6	Ion selective, oxygen and carbon dioxide electrodes	Lecture notes, articles			
7	MID-TERM	Lecture notes, articles			
8	Biosensors	Lecture notes, articles			
9	Fluorimetry	Lecture notes, articles			
10	Spectrophotometry	Lecture notes, articles			
11	Chromatography (TLC, GC and HPLC)	Lecture notes, articles			
12	Electrophoresis, coulometry, osmometry, refractometry	Lecture notes, articles			
13	Atomic emission and absorption spectroscopy	Lecture notes, articles			
14	Lab-on-a-chip devices	Lecture notes, articles			

	RECOMMENDED SOURCES
Textbook	
Additional Resources	

	MATERIAL SHARING
Documents	

Assignments	
Exams	

ASSESSMENT					
IN-TERM STUDIES NUM		PERCENTAGE			
Mid-terms	1	50			
Homework	10	20			
Presentation	1	30			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60			
Total		100			

COURSE CATEGORY	Expertise/Field Courses
-----------------	-------------------------

	COURSE'S CONTRIBUTION TO PROGRAM						
No	No Program Learning Outcomes		Contribution				
NO			1	2	3	4	5
1	Ability to reach wide and deep knowledge through scientific research in the field of Biomedical Engineering, evaluate, interpret and apply.						x
2	Ability to use scientific methods to cover and apply limited or missing knowledge, and to integrate the knowledge of different disciplines to identify, define, formulate solutions to complex engineering problems.				X		
3	Ability to construct Biomedical Engineering problems, develop methods to solve the problems and use innovative methods in the solution.			X			
4	Ability to develop new and/or original ideas, tools and algorithms; develop innovative solutions in the design of system, component or process.				X		
5	Ability to have extensive knowledge about current techniques and methods applied in Biomedical Engineering and their constraints.					X	
6	Ability to design and implement analytical modeling and experimental research, solve and interpret complex situations encountered in the process.			X			
7	Ability to use a foreign language (English) at least at the level of European Language Portfolio B2 in verbal and written communication.						X
8	Ability to lead in multidisciplinary teams, develop solutions to complex situations and take responsibility.					X	

9	Ability to pass process and the results in Biomedical Engineering field, in national and international area in or outside of the field, systematically and clearly in written or oral form.	x
10	Awareness of the social, legal, ethical and moral values and environmental dimensions. The ability to conduct research and implementation work within the framework of these values.	x
11	Awareness of the new and emerging applications in Biomedical Engineering field, and the ability to examine them and learn if necessary.	x
12	Ability to read, understand, present, critise research work and conduct original theoretical or applied research.	x

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION				
Activities	Quantity	Duration (Hour)	Total Workload (Hour)	
Course Duration (Excluding the exam weeks: 12x Total course hours)	12	3	36	
Hours for off-the-classroom study (Pre-study, practice)	14	5	70	
Midterm examination	2	3	6	
Homework	5	6	30	
Presentation	1	20	20	
Final examination	1	3	3	
Total Work Load			240	
Total Work Load / 25 (h)			9.6	
ECTS Credit of the Course			10	